Auf hoher See und in der Hochleistungs-Elektronik: Neue Sensorkonzepte dank integrierter Lichtwellenleiter aus Glas

In Glas integrierte Lichtleiter haben das Potenzial, die Messqualität von Sensoren für Forschung und Industrie deutlich zu verbessern. Im Projekt „3DGlassGuard“ arbeitet ein Konsortium unter Beteiligung des Fraunhofer IZM unter anderem an einem Sensor für die Dichtemessung von Meerwasser, der einheitlichere Klimamodelle ermöglichen soll. Auch für Leistungselektronik wollen die Forschenden Sensoren mithilfe neuartiger optischer 3D-Mikrostrukturen und KI-Designprozessen in Glas realisieren.

Measuring and testing device in action at the new eCar Powertrain Systems Business Unit development and production site in Erlangen. Siemens employees test the functional performance of power electronics for electric vehicles.
© Siemens AG
Mess- und Prüfeinrichtung für Leistungselektronik.
Ein Multi Mode Interference Coupler (MMI) zur Aufteilung von Licht auf Wellenleiter
© Fraunhofer IZM, erzeugt mittels Ansys Lumerical
Ein Multi Mode Interference Coupler (MMI) zur Aufteilung von Licht auf Wellenleiter.
Ein Taper, der die Wellenleiter aufweitet bzw. verkleinert, um zum Beispiel das Koppeln zu einer Glasfaser zu erleichtern.
© Fraunhofer IZM, erzeugt mittels Ansys Lumerical
Ein Taper, der die Wellenleiter aufweitet bzw. verkleinert, um zum Beispiel das Koppeln zu einer Glasfaser zu erleichtern.

Sensoren stoßen bei elektrischen Messungen zunehmend an ihre Grenzen - vor allem, wenn sie in sensiblen Umgebungen wie in großen Energieparks oder unter Wasser eingesetzt werden. Das Problem bei den aktuellen Sensorkonzepten sind Stromverluste und kostenintensive Herstellungsprozesse. Einen Lösungsansatz bieten Sensorkonzepte auf Basis von in Glas integrierten Lichtwellenleitern. Hieran arbeitet ein großes Konsortium aus Industrie und Forschung im BMBF-geförderten Projekt „3DGlassGuard“. Dazu sollen dreidimensional strukturierte Glaslagen in die Leiterplatte integriert werden. Diese Glass-Core-Substrate ermöglichen neue Anwendungen in der Sensorik und Datenübertragung.

Die Forschenden vom Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM entwickeln im Projekt zusammen mit den anderen Partner*innen neuartige Sensortypen, die für Branchen wie Energie, Infrastruktur, Umwelt‐ und Meeresforschung interessant sind. Bisher übliche Sensorlösungen nutzen faserbasierte oder elektrische Leiter. „3DGlassGuard“ will das mithilfe einer durch Ionenaustausch und Selective Laser Etching (SLE) dreidimensional strukturierten und direkt in die Leiterplatte integrierten Glaslage ändern.

Anwendungen für Industrie und Forschung

Im Projekt werden Sensorkonzepte für zwei Anwendungsszenarien entwickelt. In Kooperation mit Siemens realisieren die Expert*innen einen optischen Stromsensor für leistungselektronische Anwendungen, wie Strommessungen in High-Power-Electronics. Dieser neue Sensor ist nicht, wie üblich, aus einem Schaltkreis aus optischen Fasern aufgebaut, der einerseits viel Platz auf der Leiterplatte und andererseits eine komplexe Justage benötigt, um korrekt zu funktionieren, sondern aus Lichtwellenleitern, die in einer 3D-Glaslage auf die Leiterplatte integriert werden. Zudem werden bisher auftretende Wechselwirkungen durch die integrierte Glaslage umgangen, da sie galvanisch isoliert ist und die Lichtwellenleiter im Glas eingeschlossen sind. Diese Lichtwellenleiter zeichnen sich durch geringe Leitungsverluste aus und erlauben gleichzeitig die Führung von Licht mit verschiedenen Wellenlängen und Zuständen, wie beispielsweise einer definierten Polarisation. Dadurch lassen sich viel mehr Informationen als auf rein elektrischem Weg messen und übertragen.

Ein weiterer Sensor wird zusammen mit Sea & Sun Technology zur Dichtemessung von Meerwasser aufgebaut. Er nutzt das Prinzip des Interferometers, das die Überlagerung von Lichtwellen misst. Aktuell messen Dichtesensoren die elektrische Leitfähigkeit des Meerwassers, aus der sich seine Dichte herleiten lässt. Dieser Prozess stützt sich jedoch auf weltweit unterschiedlichen Referenzwerte. Eine unmittelbarere, rein optische Messung mittels des neuen Sensorkonzepts würde deutlich höhere Auflösung und eine Standardisierung der Messergebnisse ermöglichen. Damit könnten beispielsweise einheitlichere Klimamodelle erstellt werden.

Aktuell arbeiten die Forschenden an der Umsetzung der Demonstratoren, um diese dann Funktionalitätstests mit den Unternehmen zu unterziehen. Eine besondere Herausforderung ist dabei die Miniaturisierung der neuen Sensorkonzepte, um sie auf einer Leiterplatte unterzubringen. Das Material Glas bietet durch seine planare Form aber mehr Möglichkeiten die Lichtwellenleiter und weitere Funktionalitäten einzubringen. Parallel zur Entwicklung der Sensoren befinden sich zusammen mit der TU Berlin KI-gestützte Simulationstools in Arbeit. Diese sollen dabei helfen, einzelne optische Komponenten der Sensoren zu verkleinern und effizienter zu machen, wie es durch einen Menschen allein nicht möglich wäre.

Das Projekt „3DGlassGuard“ läuft vom 15.05.2024 - 14.05.2027. Es wird mit insgesamt 4,6 Millionen Euro gefördert. Davon stammen 69,3% aus Mitteln des Bundesministeriums für Bildung und Forschung aus dem Förderprogramm Quantensysteme mit dem Förderkennzeichen 13N16852. Am Projekt beteiligt sind die Siemens AG als Projektkoordinator, das Fraunhofer IZM, die Contag AG, die LightFab GmbH, die Sea & Sun Technology GmbH, die Technische Universität Berlin und die Schott AG als assoziierter Partner.

(Text: Steffen Schindler)

Letzte Änderung: